
Storage Resource Managers:
Recent International Experience on Requirements

and Multiple Co-Operating Implementations

Lana Abadie1, Paolo Badino1, Jean-Philippe Baud1,Ezio Corso2, Matt Crawford3, Shaun De Witt4, Flavia Donno1,
Alberto Forti5, Patrick Fuhrmann6, Gilbert Grosdidier7, Junmin Gu8, Jens Jensen4, Sophie Lemaitre1, Maarten
Litmaath1,Dmitry Litvintsev3, Giuseppe Lo Presti1, Luca Magnoni5, Tigran Mkrtchan6, Alexander Moibenko3,
Vijaya Natarajan8, Gene Oleynik3, Timur Perelmutov3, Don Petravick3, Arie Shoshani8, Alex Sim8, Massimo
Sponza2, Riccardo Zappi5
Editor and coordinator: Arie Shoshani

Abstract
Storage management is one of the most important enabling technologies for large-scale scientific investigations.
Having to deal with multiple heterogeneous storage and file systems is one of the major bottlenecks in managing,
replicating, and accessing files in distributed environments. Storage Resource Managers (SRMs), named after their
web services control protocol, provide the technology needed to manage the rapidly growing distributed data
volumes, as a result of faster and larger computational facilities. SRMs are Grid storage services providing
interfaces to storage resources, as well as advanced functionality such as dynamic space allocation and file
management on shared storage systems. They call on transport services to bring files into their space transparently
and provide effective sharing of files. SRMs are based on a common specification that emerged over time and
evolved into an international collaboration. This approach of an open specification that can be used by various
institutions to adapt to their own storage systems has proven to be a remarkable success – the challenge has been to
provide a consistent homogeneous interface to the Grid, while allowing sites to have diverse infrastructures. In
particular, supporting optional features while preserving interoperability is one of the main challenges we describe
in this paper. We also describe using SRM in a large international High Energy Physics collaboration, called
WLCG, to prepare to handle the large volume of data expected when the Large Hadron Collider (LHC) goes online
at CERN. This intense collaboration led to refinements and additional functionality in the SRM specification, and
the development of multiple interoperating implementations of SRM for various complex multi-component storage
systems.

1 CERN, European Organization for Nuclear Research, Switzerland
2 ICTP/EGRID, Italy
3 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
4 Rutherford Appleton Laboratory, Oxfordshire, England
5 INFN/CNAF, Italy
6 Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany
7 LAL / IN2P3 / CNRS, Faculté des Sciences, Orsay Cedex, France
8 Lawrence Berkeley National Laboratory, Berkeley, California, USA

1. Introduction and Overview
Increases in computational power have created the
opportunity for new, more precise and complex
scientific simulations leading to new scientific
insights. Similarly, large experiments generate ever
increasing volumes of data. At the data generation
phase, large volumes of storage have to be allocated
for data collection and archiving. At the data
analysis phase, storage needs to be allocated to bring
a subset of the data for exploration, and to store the
subsequently generated data products. Furthermore,
storage systems shared by a community of scientists
need a common data access mechanism which

allocates storage space dynamically, manages stored
content, and automatically remove unused data to
avoid clogging data stores.
When dealing with storage, the main problems facing
the scientist today are the need to interact with a
variety of storage systems and to pre-allocate storage
to ensure data generation and analysis tasks can take
place. Typically, each storage system provides
different interfaces and security mechanisms. There
is an urgent need to standardize and streamline the
access interface, the dynamic storage allocation and
the management of the content of these systems. The
goal is to present to the scientists the same interface

regardless of the type of system being used. Ideally,
the management of storage allocation should become
transparent to the scientist.
To accommodate this need, the concept of Storage
Resource Managers (SRMs) was devised [SSG02,
SSG03] in the context of a project that involved High
Energy Physics (HEP) and Nuclear Physics (NP).
SRM is a specific set of web services protocols used
to control storage systems from the Grid, and should
not be confused with the more general concept of
Storage Resource Management as used in industry.
By extension, a Grid component providing an SRM
interface is usually called “an SRM.”
After recognizing the value of this concept as a way
to interact with multiple storage systems in a uniform
way, several Department of Energy Laboratories
(LBNL, Fermilab, and TJNAF), as well as CERN and
Rutherford Appleton Lab in Europe, joined forces
and formed a collaboration that evolved into a stable
version, called SRM v1.1, that they all adopted. This
led to the development of SRMs for several disk-
based systems and mass storage systems, including
HPSS (at LBNL), Castor (at CERN), dCache/Enstore
(at Fermilab and DESY), and JasMINE (at TJNAF).
The interoperation of these implementations was
demonstrated and proved an attractive concept.
However, the functionality of SRM v1.1 was limited,
since space was allocated by default policies, and
there was no support for directory structures. The
collaboration is open to any institution willing and
able to contribute. For example, when INFN, the
Italian institute for nuclear physics, started working
on their own SRM implementation (StoRM,
described below), they joined the collaboration. The
collaboration also has an official standards body, the
Open Grid Forum, OGF, where it is registered as
GSM-WG (GSM is Grid Storage Management; SRM
was already taken for a different purpose).
Subsequent collaboration efforts led to advanced
features such as explicit space reservations, directory
management, and support for Access Control Lists
(ACL) to be supported by the SRM protocol, now at
version 2.1. As with many advanced features, it was
optional for the implementations to support them,
partly to be inclusive: we did not want to exclude
implementations without specific features from
supporting version 2.1. This inclusiveness principle
is a foundation for the SRM collaboration, but is a
source of problems in writing applications and in
testing interoperability, as we shall see below.
Later, when a large international HEP collaboration,
WLCG (the World-wide LHC Computing Grid)
decided to adopt the SRM standard, it became clear
that many concepts needed clarification, and new

functionality was added, resulting in SRM v2.2.
While the WLCG contribution has been substantial,
the SRM can also be used by other Grids, such as
those using the EGEE gLite software. There are
many such Grids, often collaborations between the
EU and developing countries. Having open source
and license-free implementations (as most of the
implementations described in this paper are) helps
these projects.
In this paper, we elaborate on the process of the
definition of the SRM v2.2 protocol and its interface
to a variety of storage systems. Furthermore, we
establish a methodology for the validation of the
protocol and its implementations through families of
test suites. Such test suites are used on a daily basis
to ensure inter-operation of these implementations.
This joint international effort proved to be a
remarkable and unique achievement, in that now
there are multiple SRMs developed in various
institutions around the world that interoperate. Many
of these SRMs have a large number of installations
around the world. This demonstrates the value of
inter-operating middleware over a variety of storage
systems.
In section 2, we describe related work. In Section 3
and 4 we concentrate on the basic functionality
exposed by SRM and the concepts that evolved from
this international collaboration. Section 5 focuses on
five inter-operating SRM v2.2 implementations over
widely different storage systems, including multi-
component and mass storage systems. Section 6
describes the validation process, and presents the
results of interoperation tests and lessons learned
from such tests.

2. Related Work
The Storage Resource Broker (SRB) [srb] is a client-
server middleware that provides uniform access for
connecting to heterogeneous data resources over a
wide-area network and accessing replicated data sets.
It uses a centralized Meta Data Catalog (MCat) and
supports archiving, caching, synchs and backups,
third-party copy and move, version control, locking,
pinning, aggregated data movement and a Global
Name space (filesystem like browsing). SRB
provides as well for collection and data abstraction
presenting a Web Service interface. While SRB
offers a complete storage service, in comparison,
SRM is only the interface to storage; it is an open (in
particular, non-proprietary) web service protocol,
allowing storage systems to fit in as components into
a larger data and computational Grid.
Condor [condor] from University of Wisconsin at
Madison is a comprehensive middleware suite,
supporting storage natively via the Chirp protocol.

Chirp is a remote I/O protocol that provides the
equivalent of UNIX operations such as open(), read(),
write(), close(). Chirp provides a variety of
authentication methods, allowing remote users to
identify themselves with strong Globus or Kerberos
credentials. However, it does not offer space
management capabilities, such as those available in
SRM. The Chirp protocol is also used by the NeST
component that aims to deliver guaranteed
allocations, one of the optional features of SRM.
However, NeST currently relies primarily on an
underlying file system to provide access to storage.
The Condor storage middleware suite presents some
overlap with SRM in terms of features and intent.
However, generally speaking the SRM protocol is
designed mainly for managing storage spaces and
their content and Chirp is focused on data access.
There is some interest in interoperability between
SRB and SRM, or between SRM and Condor.
However, such efforts did not come to fruition since
the effort required to do that properly outweighs the
need, particularly since the implementations fit into
Grids at different levels of the software stack.
Other computational Grids use distributed file
systems. A protocol that is gaining in popularity is
NFSv4. It is the IETF standard for distributed file
systems that is designed for security, extensibility,
and high performance. The NFSv4 offers a global
name space and provides a pseudo file system that
enables support for replication, migration and referral
of data. One of the attractive features of NFS4 is the
decoupling of the data paths from the storage access
protocol. In particular, the possibility of negotiating a
storage access and management protocol between
data servers would allow for SRM to play a role in
the integration of mass storage systems in an NFSv4
infrastructure.

3. The Basic Concepts
The ideal vision of a distributed system is to have
middleware facilities that give clients the illusion
that all the compute and storage resources needed
for their jobs are running on their local system.
This implies that a client only logs in and gets
authenticated once, and that some middleware
software figures out where are the most efficient
locations to move data to, to run the job, and to
store the results in. The middleware software plans
the execution, reserves compute and storage
resources, executes the request, and monitors the
progress. The traditional emphasis is on sharing
large compute resource facilities, sending jobs to be
executed at remote computational sites. However,
very large jobs are often “data intensive”, and in
such cases it may be necessary to move the job to

where the data sites are in order to achieve better
efficiency. Alternatively, partial replication of the
data can be performed ahead of time to sites where
the computation will take place. Thus, it is
necessary to also support applications that produce
and consume large volumes of data. In reality, most
large jobs in the scientific domain involve the
generation of large datasets, the consumption of
large datasets, or both. Therefore, it is essential that
software systems exist that can provide space
reservation and schedule the execution of large file
transfer requests into the reserved spaces. Storage
Resource Managers (SRMs) are designed to fill this
gap.
In addition to storage resources, SRMs also need to
be concerned with the data resource (or files that
hold the data). A data resource is a chunk of data
that can be shared by more than one client. In many
applications, the granularity of a data resource is a
file. It is typical in such applications that tens to
hundreds of clients are interested in the same subset
of files when they perform data analysis. Thus, the
management of shared files on a shared storage
resource is also an important aspect of SRMs. The
decision of which files to keep in the storage
resource is dependent on the cost of bringing files
from remote systems, the size of the file, and the
usage level of that file. The role of the SRM is to
manage the space under its control in a way that is
most cost beneficial to the community of clients it
serves.
In general, an SRM can be defined as a middleware
component that manages the dynamic use and
content of a storage resource in a distributed system.
This means that space can be allocated dynamically
to a client, and that the decision of which files to
keep in the storage space is controlled dynamically
by the SRM. The main concepts of SRMs are
described in [SSG02] and subsequently in more
detail in a book chapter [SSG03]. The concept of a
storage resource is flexible: an SRM could be
managing a disk cache, or a hierarchical tape
archiving system, or a combination of these. In
what follows, they are referred to as “storage
components”. When an SRM at a site manages
multiple storage resources, it may have the
flexibility to store each file at any of the physical
storage systems it manages or even to replicate the
files in several storage components at that site. The
SRMs do not perform file transfer, but rather
cooperate with file transfer services, such as
GridFTP, to get files in/out of their storage systems.
Some SRMs also provide access to their files
through Posix or similar interfaces. Figure 1 shows
a schematic diagram of the SRM concepts as well as

the storage systems and institutions that developed
them for v2.2, described in this paper.
SRMs are designed to provide the following main
capabilities:
1) Non-interference with local policies. Each

storage resource can be managed independently
of other storage resources. Thus, each site can
have its own policy on which files to keep in its
storage resource and for how long. The SRM
will not interfere with the enforcement of local
policies. Resource monitoring of both space
usage and file sharing is needed in order to
profile the effectiveness of the local policies.

2) Pinning files. Files residing in one storage
system can be temporarily locked in on-line
cache before being removed for resource usage
optimization or transferred to another system that
needs them, while used by an application. We
refer to this capability as pinning a file, since a
pin is a lock with a lifetime associated with it. A
pinned file can be actively released by a client,
in which case the space occupied by the file is
made available to the client. SRMs can choose
to keep or remove a released file depending on
their storage management needs,

3) Advance space reservations. SRMs are
components that manage the storage content
dynamically. Therefore, they can be used to plan
the storage system usage by permitting advance
space reservations by clients.

4) Dynamic space management. Managing shared
disk space usage dynamically is essential in
order to avoid clogging of storage resources.
SRMs use file replacement policies whose goal

is to optimize service and space usage based on
access patterns.

5) Support abstract concept of a file name. SRMs
provide an abstraction of the file namespace
using “Site URLs” (SURLs), while the files can
reside in any one or more of the underlying
storage components. An example of an SURL
is: srm://ibm.cnaf.infn.it:8444/dteam/test.10193,
where the first part “ibm.cnaf.infn.it:8444” is the
address and port of the machine where the SRM
resides, and the second part “/dteam/test.10193”
is the abstract file path, referred to as the Site
File Name (SFN).

6) Temporary assignment of transfer file names.
When requesting a file from an SRM, an SURL
(see above) is provided. The SRM can have the
file in several locations, or can bring it from tape
to disk for access. Once this is done a “Transfer
URL” (TURL) is returned for a temporary access
to the file controlled by the pinning lifetime. A
similar capability exists when a client wishes to
put a file into the SRM. The request provides
the desired SURL for the file, and the SRM
returns a TURL for the transfer of the file into
the SRM. A TURL must have a valid transfer
protocol such as:
gsiftp://ibm139.cnaf.infn.it:2811//gpfs/dteam/test
.10193. Note that the port 2811 is a GridFTP
port.

7) Directory Management and ACLs. The
advantage of organizing files into directories is
well known, of course. However, SRMs provide
directory management support to the SURL
abstractions and keep the mapping to the actual
files stored in the underlying file systems.

SRM
(BeStMan)

client/user applications

Unix-based
Disk
Pools

Unix-based
Disk
Pools

dCachedCache CASTORCASTOR

CCLRC
RAL

GPFS

SRM
(DPM)
SRM
(DPM)

SRM/
dCache
SRM/
dCache

SRM/
CASTOR

SRM/
CASTOR

SRM
(StoRM)
SRM

(StoRM)

Unix-based
Disk
Pools

Unix-based
Disk
Pools

SRM
(BeStMan)

client/user applications

Unix-based
Disk
Pools

Unix-based
Disk
Pools

dCachedCache CASTORCASTOR

CCLRC
RAL

GPFS

SRM
(DPM)
SRM
(DPM)

SRM/
dCache
SRM/
dCache

SRM/
CASTOR

SRM/
CASTOR

SRM
(StoRM)
SRM

(StoRM)

Unix-based
Disk
Pools

Unix-based
Disk
Pools

Figure 1: Multiple inter-operating SRM implementations. Clients can access different

mass storage and file systems through a uniform SRM interface

Accordingly, Access Control Lists (ACLs) are
associated with the SURLs.

8) Transfer protocol negotiation. When making a
request to an SRM, the client needs to end up
with a protocol for the transfer of the files that
the storage system supports. In general, systems
may be able to support multiple protocols and
clients should be able to use different protocols
depending on the system they are running on.
SRM supports protocol negotiation, by matching
the highest protocol they can support given an
ordered list of preferred protocols by the client.

9) Peer to peer request support. In addition to
responding to clients requests, SRMs are
designed to communicate with each other. Thus,
one SRM can be asked to copy files from/to
another SRM.

10) Support for multi-file requests. The ability to
make a single request to get, put, or copy
multiple files is essential for practical reasons.
This requirement is supported by SRMs by
specifying a set of files. Consequently, such
requests are asynchronous, and status functions
need to be provided to find out the progress of
the requests.

11) Support abort, suspend, and resume operations.
These are necessary because requests may be
running for a long time, in case that a large
number of files are involved.

The main challenges for a common interface
specification are to design the functionality of SRMs
and their interfaces to achieve the goals stated above,
and to achieve the interoperation of SRM
implementations that adhere to the common interface
specification. More details of the basic functionality
can be found in [SSG03]. The specification of SRM
interfaces and their corresponding WSDL can be
found at the collaboration web site [srm-collab].
The functions supported by SRMs in order to get or
put files into the SRMs are referred to as
“srmPrepareToGet” and “srmPrepareToPut”. A set
of files (or a directory) is provided in the form of
SURLs, and TURLs are returned. The TURLs are
used by the requesting clients to get or put files
from/into the SRM using the TURL’s transfer
protocol. The function srnCopy provides the
capability to replicate files from one SRM to another.
When using the space reservation function
srmReserveSpace, the client can specify the desired
space and duration of the reservation. The SRM
returns the space and duration it is willing to allocate
according to its policies, and a space token. If the
client does not wish to accept that, it can issue

srmReleaseSpace. Otherwise, it can put files into the
reserved space by referring to the space token.
Directory functions are very similar to the familiar
Unix functions and include srmLs, srmMkdir,
srmRmdir, srmMv, and srmRm. Since files may
have a limited lifetime in the SRM, these functions
need to reflect lifetime status as well.

4. Additional concepts introduced with v2.2
Soon after the WLCG collaboration decided to try
and adopt version 2.1 of the SRM specification as a
standard for all their storage systems, it became clear
that some concepts needed to be clarified, and
perhaps new functionality added. The main issues
were: 1) the specification of the storage properties; 2)
the clarification of space and the meaning of a space
token when it is returned after a space reservation is
made; and 3) the ability to request that files will be
brought from archival storage into an online disk
system for subsequent access. This led to a new
SRM specification, referred to as SRM v2.2. We
discuss each of these concepts further next.
Storage component properties
The issue of how to expose expected behavior of a
storage component by the SRM was debated at great
length. In the end, it was concluded that it is
sufficient to expose two orthogonal properties:
Retention Policy and Access Latency. These are
defined below:
1) Retention Policy: REPLICA, OUTPUT,
CUSTODIAL
The Quality of Retention is a kind of Quality of
Service. It refers to the probability that the storage
system loses a file. The type is used to describe the
retention policy assigned to the files in the storage
system, at the moment when the files are written into
the desired destination in the storage system. It is
used as a property of space allocated through the
space reservation function. Once the retention policy
is assigned to a space, the files put in the reserved
space will automatically be assigned the retention
policy of the space. The description of Retention
Policy Types is:
• REPLICA quality has the highest probability of

loss, but is appropriate for data that can be
replaced because other copies can be accessed in
a timely fashion.

• OUTPUT quality is an intermediate level and
refers to the data which can be replaced by
lengthy or effort-full processes.

• CUSTODIAL quality provides low probability
of loss.

2) Access Latency: ONLINE, NEARLINE

Files may be Online or Nearline. These terms are
used to describe how the latency to access a file is
improvable. Latency is improved by storage systems
replicating a file such that its access latency is online.
We do not include here “offline” access latency,
since a human has to be involved in getting offline
storage mounted. For SRMs, one can only specify
ONLINE and NEARLINE. The type will be used to
describe an access latency property that can be
requested at the time of space reservation. The files
that are contained in the space may have the same or
lower access latency as the space. The ONLINE
cache of a storage system is the part of the storage
system which provides file access with online
latencies. The description of Access Latency types is:
• ONLINE has the lowest latency possible. No

further latency improvements are applied to
online files.

• NEARLINE files can have their latency
improved to online latency automatically by
staging the files to online cache.

Storage Areas and Storage Classes
Because of fairly complex storage systems used by
the WLCG collaboration, it was obvious that
referring to “storage system” is imprecise. Instead,
the concept of a “storage area” is used. A storage
system usually is referred to as a Storage Element,
viz. a grid element providing storage services.
A Storage Element can have one or more storage
areas. Each storage area includes parts of one or more
hardware components (single disk, RAID, tape,
DVD, …). Any combination of components is
permissible. A storage area is specified by its
properties which include the Access Latency and
Retention Policy described above. Explicitly
supported combinations are known as Storage
Classes: online-replica (e.g. a common disk space
allocated for online access), nearline-custodial (e.g. a
high-quality robotic tape system), or online-custodial
(e.g. a highly protected online disk that may keep
multiple replicas, or an online disk with backup on a
high-quality robotic tape system). Storage areas that
consist of heterogeneous components are referred to
as “composite storage areas” and the storage space in
them as “composite space”. “Composite storage
elements” are storage elements serving composite
storage areas. Storage areas can share one or more
storage components. This allows storage components
to be partitioned for use by different user-groups or
Virtual Organizations (VOs).
The SRM interface exposes only the storage element
as a whole and its storage areas, not their
components. However, a space reservation to a
composite storage element can be made requesting

Access Latency-Retention Policy combinations that
may determine which storage components are
assigned. Specifically, a space reservation to a
composite storage element can request the following
combinations to target the online or nearline storage
components: a) online-replica to target the online
storage components; b) nearline-custodial to target
the nearline storage components (assuming they
support custodial retention policy); c) online-
custodial to target both the online and nearline
storage components.
The function srmBringOnline
When a file is requested from a mass storage system
(MSS), it is brought onto disk from tape in case that
the file is not already on disk. The system determines
which files to keep on disk, depending on usage
patterns and system loads. However, this behavior is
not always acceptable to large projects, since they
need to be in control of what is online in order to
ensure efficient use of computing resources. A user
performing a large analysis may need to have all the
files online before starting the analysis. Similarly, a
person in charge of a group of analysts may wish to
bring all the files for that group online for all of them
to share. Therefore the concept of bringing files
online was introduced.
srmBringOnline can be applied only to a composite
space that has nearline as well as online components.
When performing this function the SRM is in full
control as to where files end up and this information
is not visible to the client. For example, the SRM
may have multiple online spaces, and it can choose
which will be used for each file of the request.
Similarly, the SRM can choose to keep multiple
online replicas of the same file for transfer efficiency
purposes. Once srmBringOnline is performed,
subsequent srmPrepareToGet requests can be issued
by clients, and TURLs returned, where each TURL
indicates where the corresponding file can be
accessed, and the protocol to be used.

5. The Implementation of five SRMs
In this section we describe briefly implementations of
five SRM that adhere to the same SRM v2.2
specification, in order to illustrate the ability of
SRMs to have the same interface to a variety of
storage systems. The underlying storage systems can
vary from a simple disk, multiple disk pools, mass
storage systems, parallel file systems, to complex
multi-component multi-tiered storage systems.
While the implementations use different approaches,
we illustrate the power of the SRM standard
approach in that such systems exhibit a uniform
interface and can successfully interoperate. Short

descriptions of the SRMs implementation are
presented (in alphabetical order) next.
BeStMan – Berkeley Storage Manager
BeStMan is a java-based SRM implementation from
LBNL. Its modular design allows different types of
storage systems to be integrated in BeStMan while
providing the same interface for the clients. Based
on immediate needs, two particular storage systems
are currently used. One supports multiple disks
accessible from the BeStMan server, and the other is
the HPSS storage system. Another storage system
that was adapted with BeStMan is a legacy MSS at
NCAR in support of the Earth System Grid project
(www.earthsystemgrid.org).
Figure 2 shows the design of BeStMan. The Request
Queue Management accepts the incoming requests.
The Local Policy Module contains the scheduling
policy, garbage collection policy, etc. The Network
Access Management module is responsible for
accessing files using multiple transfer protocols. An
in-memory database is provided for storing the
activities of the server. The Request Processing
module contacts the policy module to get the next
request to work on. For each file request, the
necessary components of the Network Access
Management module and the Storage Modules (the
Disk Management and the MSS Access Management
modules) are invoked to process the data.

BeStMan supports space management functions and
data movement functions. Users can reserve space in
the preferred storage system, and move files in and
out of their space. When necessary BeStMan
interacts with remote storage sites on their behalf,
e.g. another gsiftp server, or another SRM. BeStMan
is expected to replace all currently deployed v1.1
SRMs from LBNL.
Castor-SRM
The SRM implementation for the CERN Advanced
Storage system (CASTOR) is the result of

collaboration between Rutherford Appleton
Laboratory and CERN. Like that of other
implementations, the implementation faced unique
challenges. These challenges were based around the
fundamental design concepts under which CASTOR
operates, which are different from those of other
mass storage systems. CASTOR trades some
flexibility for performance, and this required the
SRM implementation to have some loss of flexibility,
but with gains in performance.
CASTOR is designed to work with a tape back-end
and is required to optimise data transfer to tape, and
also to ensure that data input to front-end disk cache
is as efficient as possible. It is designed to be used in
cases where it is essential to accept data at the fastest
possible rate and have that data securely archived.
These requirements are what cause differences
between the CASTOR SRM implementation and
others.
The need to efficiently stream to tape and clear disk
cache for new incoming data leads to two effects:

• the SURL lifetime is effectively infinite and
• the TURL, or pinning, lifetime is advisory.

In fact the latter is merely a modified garbage
collection algorithm which tries to ensure those files
with a low weighting are garbage collected first.
Also, space management in the CASTOR SRM is

significantly different to those of
other implementations. Since the
design of the MSS is to optimise
moving data from disk to tape, there
is no provision for allowing dynamic
space allocation at a user level. The
CASTOR SRM does support space
reservation, but as an asynchronous
process involving physical
reallocation of the underlying disk
servers. Other implementation
designed to work with only disk
based Mass Storage Systems, or a
combination of disk and tape, often
allow for dynamic space reservation.

The architecture of the CASTOR SRM (Figure 3)
includes two stateless processes, which interact
through a RDBMS. A client-facing process (the
‘server’) directly deals with synchronous requests
and stores asynchronous requests in the database for
later processing. The database is therefore used to
store all storage-oriented requests as well as the
status of the entire system. A separate process (the
‘daemon’) faces the CASTOR backend system, and
updates the status of the ongoing requests, allowing
for a more fault resilient behaviour in the event the

Request Processing

MSS Access Management
(PFTP, HSI, SCP...)

DISK Management

Network Access Management

(GridFTP . FTP, BBFTP, SCP...)

Request Queue Management Security Module

Local

Policy

Module

Figure 2: The architecture diagram of BeStMan

backend system shows some instability, as the clients
will always be decoupled from the CASTOR
backend.
This architecture leverages the existing framework
that has been designed and developed for the
CASTOR mass storage system itself [BGP+’07]. The
entire Entity-Relationship (E-R) schema has been
designed using the UML methodology, and a
customized code generation facility, maintained in
the CASTOR framework, has been used to generate
the C++ access layer to the database.
dCache-SRM
dCache is a Mass Storage System developed jointly
by Fermilab and DESY which federates a large
number of disk systems on heterogeneous server
nodes to provide a storage service with a unified
namespace. dCache provides multiple means of file
access protocols, including FTP, Kerberos GSSFTP,

GSIFTP, HTTP, and dCap and xRootD, POSIX
APIs to dCache. dCache can act as a standalone Disk
Storage System or as a front-end disk cache in a
hierarchical storage system backed by a tape interface
such as OSM, Enstore [enstore], Tsm, HPSS [hpss],
DMF or Castor [castor]. dCache storage system
(Figure 4) has a highly scalable distributed
architecture that allows easy addition of new services
and data access protocols.
dCache provides load balancing and replication
across nodes for “hot” files, i.e. files that are accessed
often. It also provides a resilient mode, which
guarantees that a specific number of copies of each
file are maintained on different hardware. This mode
can take advantage of otherwise unused and
unreliable disk space on compute-nodes. This is a
cost-effective means of storing files robustly and
maintaining access to them in the face of multiple

hardware failures.
The dCache Collaboration
continuously improves the features
and the Grid interfaces of dCache.
It has delivered the gPlazma
element that implements flexible
Virtual-Organization (VO)-based
authorization. DCache’s GridFTP
and GsiDCap services are
implementations of the grid aware
data access protocols. But the most
important step to connect dCache
to the Grid was the development of
the SRM interface.
 dCache has included an
implementation of SRM Version
1.1 since 2003 and now has all
protocol elements of SRM v2.2
required by the WLCG. The new
SRM functions include space

Request

Handler

Database
Async .

Process

or

CASTOR

Clients

Figure 3: The architecture of the CASTOR SRM

Figure 4: The Architecture of dCache

reservation, more advanced data transfer, and new
namespace and access control functions.
Implementation of these features required an update
of the dCache architecture and evolution of the
services and core components of the dCache Storage
System. Implementation of SRM Space Reservation
led to new functionality in the Pool Manager and the
development of the new Space Manager component
of dCache, which is responsible for accounting,
reservation and distribution of the storage space in
dCache. SRM's new "Bring Online" function, which
copies tape-backed files to dCache disk, required
redevelopment of the Pin Manager service,
responsible for staging files from tape and keeping
them on disk for the duration of the Online state. The
new SRM concepts of AccessLatency and
RetentionPolicy led to the definition of new dCache
file attributes and new dCache code to implement
these abstractions. SRM permission management
functions led to the development of the Access
Control List support in the new dCache namespace
service, Chimera
DPM – Disk Pool Manager
The DPM (Disk Pool Manager) aims at providing a
reliable and managed disk storage system for the
Tier-2 sites. It is part of the EGEE project. It
currently supports only disk-based installations. The
architecture is based on a database and multi-
threaded daemons (see Figure 5):
• The dpns daemon controls the hierarchical

namespace, the file permissions and the mapping

between SFN (Site File Name) and physical
names; An SFN is the file path portion of an
SURL.

• The dpm daemon manages the configuration of
disk pools and file systems. It automatically
handles the space management and the
expiration time of files. It also processes the
requests.

• The SRM (v1.1 and v2.2) daemons distribute the
SRM requests workload (delete, put, get, etc);

• The Globus gsiftp daemon provides secure file
transfers between the DPM disk servers and the
client;

• The rfio daemon provides secure POSIX file
access and manipulation.

In most cases, all the core daemons are installed on
the same machine. However for large deployment,
they can run on separate nodes.
Although not represented in Figure 5, https and
xrootd [xrootd] protocols can be used to access data.
A database backend (both MySQL and Oracle are
supported) is used as a central information repository.
It contains two types of information:
• Data related to the current DPM configuration

(pool and file system) and the different
asynchronous requests (get and put) with their
statuses. This information is accessed only by the
DPM daemon. The SRM daemons only put the
asynchronous requests and poll for their statuses.

• Data related to the
namespace, file
permissions (ACLs
included) and virtual
IDs which allow a full
support of the ACLs.
Each user DN
(Distinguished Name)
or VOMS (Virtual

Organization
Membership Service)
attribute is internally
mapped to an
automatically allocated
virtual ID. For instance,
the user Chloe
Delaporte who belongs
to the LHCb group
could be mapped to the
virtual UID 1427 and
virtual GID 54. This
pair is then used for a
fast check of the ACLs
and ownership. This

Figure 5: Overview of the DPM architecture

part is only accessed by the DPNS daemon.
The GSI (Grid Security Infrastructure) ensures the
authentication which is done by the first service
contacted. For instance, if it is an SRM request, then
the SRM daemon does the authentication. The
authorization is based on VOMS.
The load balancing between the different file systems
and pools is based on the round robin mechanism.
Different tools have been implemented to enable
users to manipulate files in a consistent way. The
system is rather easy to install and to manage. Very
little support is needed from the developers’ team.
The DPM is currently installed at roughly 80 sites.
For a given instance, the volume of data managed
ranges from a few TB up to 150 TB of data. So far no
limit on the volume of data has been reported.
StoRM - Storage Resource Manager
StoRM [CCD+’06] (acronym for Storage Resource
Manager) is an SRM service designed to manage file
access and space allocation on high performing
parallel and cluster file systems as well as on
standard POSIX file systems. It provides the
advanced SRM management functionalities defined
by the SRM interface version 2.2 [srm-v22]. The
StoRM project is the result of the collaboration
between INFN – the Italian National Institute for

Nuclear Physics - and the Abdus Salam ICTP for the
EGRID Project for Economics and Finance research.
StoRM is designed to respond to a set of requests
coming from various Grid applications allowing for
standard POSIX access to files in local environment,
and leveraging on the capabilities provided by
modern parallel and cluster file systems such as the
General Parallel File System (GPFS) from IBM. The
StoRM service supports guaranteed space reservation
and direct access (by native POSIX I/O calls) to the
storage resource, as well as supporting other standard
Grid file access libraries like RFIO and GFAL.

More generally, StoRM is able to work on top of any
standard POSIX file system providing ACL (Access
Control List) support, like XFS and ext3. Indeed,
StoRM uses the ACLs provided by the underlying
file system to implement the security model, allowing
both Grid and local access. StoRM supports VOMS
[voms] certificates and has a flexible authorization
framework based on the interaction with one or more
external authorization services to verify if the user
can perform the specified operation on the requested
resources.
Figure 6 shows the multilayer architecture of StoRM.
The are two main components: the frontend, that
exposes the SRM web service interface and manages
user authentication, and the backend, that executes all
SRM functions, manages file and space metadata,
enforces authorization permissions on files, and
interacts with file transfer services. StoRM can work
with several underlying file systems through a plug-
in mechanism that decouples the core logic from the
specific file system functionalities. The specific file
system driver is loaded at run time.
To satisfy the availability and scalability
requirements coming from different Grid applications
scenarios, one or more instances of StoRM
components can be deployed on different machines
using a centralized database service. Moreover, the

namespace mechanism adopted by
StoRM makes it unnecessary to store
the physical location of every file
managed in a database. The namespace
is defined in an XML document that
describes the different storage
components managed by the service,
the storage areas defined by the site
administrator and the matching rules
used at runtime to map the logical to
physical paths. The physical location of
a file can be derived from the requested
SURL, the user credentials and the
configuration information described in
the XML document.

5. The testing procedure
An important aspect in the definition of the SRM
v2.2 protocol is the verification against existing
implementations. The verification process has helped
understanding if foreseen transactions and
requirements make sense in the real world, and
identifying possible ambiguities. It uncovered
problematic behaviors and functional interferences
early enough in the definition cycle to allow for the
protocol specification to be adjusted to better match
existing practices. The verification process has shown

Figure 6: StoRM Architecture

if the protocol adapted naturally and efficiently to
existing storage solutions. In fact, it is crucial that a
protocol is flexible and does not constrain the basic
functionality available in existing services. As an
example we can mention the time at which a SURL
starts its existence in the namespace of an SRM.
Implementations like dCache mark a file as existent
in the namespace as soon as a client starts a transfer
for the creation of the file. This is to avoid the need
for cleanup of the name space when the client never
gets to write the file. Other implementations, instead,
prefer to reserve the name space entry as soon as
possible, to present a consistent view to all
concurrent clients, or to simplify the interfacing with
the MSS backend.
The verification process has helped proposing and
refining a conceptual model behind the protocol, with
an explicit, clear and concise definition of its
underlying structural and behavioral concepts. This
model has made it easier to define the service
semantics, helped implementation developers, and
provided for a more rigorous validation of
implementations. The model is a synthetic
description of a user’s view of the service, with the
basic entities (such as space, file,…), their
relationships, and the changes they may go through.
The model is described in some details in [DD’07].
The analysis of the complexity of the SRM interface
through its formal model shows that a high number of
tests need to be executed in order to fully check the
compliance of the implementations to the
specifications. Therefore, an appropriate testing
strategy has to be adopted in order to reduce the
number of tests to be performed to a manageable
level, while at the same time covering those aspects
that are deemed to matter in practice.
Testing activities aim at finding differences between
the actual and the intended behavior of a system. In
particular, [MSBT’04] gives the following definition:
“Testing is the process of executing a program with
the intent of finding errors.” A test set is defined to
be exhaustive if and only if it fully describes the
expected semantics of the specifications, including
valid and invalid behaviors.
In order to verify the compliance to a protocol of a
specific implementation a test-case-design
methodology known as Black Box testing is often
used. The Black Box testing technique focuses on
identifying the subset of all possible test cases with
the highest probability of detecting the most errors. In
particular, the most popular black box testing
approaches are Equivalence partitioning, Boundary
value analysis, Cause-effect graphing and Error
guessing [MSBT’04]. Each of these approaches

covers certain cases and conditions but they do not
ensure the identification of an exhaustive testing
suite.
The black box testing technique has been used to
design 5 families of tests to verify the available
implementations of SRM v2.2. Furthermore, many
hypotheses have been made in order to make the
model simpler and to reduce the total number of tests,
while keeping the test sets valid and unbiased. The 5
families of tests are the following:
• Availability: the srmPing function and a full put

cycle for a file is exercised (srmPrepareToPut,
srmStatusOfPutRequest, file transfer,
srmPutDone). This family is used to verify
availability and very basic functionality of an
SRM endpoint.

• Basic: the equivalence partitioning and boundary
condition analysis is applied to verify that an
implementation satisfies the specification when
it has a single SRM call active at any given time.

• Use cases: cause-effect graphing, exceptions,
functional interference, and use cases extracted
from the middleware and user applications are
exercised.

• Interoperability: remote operations (servers
acting as clients for some basic SRM functions)
and cross copy operations among several
implementations are executed.

• Stress: the error guessing technique and typical
stress situations are applied to verify resilience to
load.

A specific language, the S2 [MD’07] has been

adopted for a fast implementation of test cases, and
the open source implementation is now maintained
by WLCG. The S2 language has several attractive
characteristics:
• It allows for the quick development of test

programs that exercise a single test case each.

Figure 7: Availability (in percentage) of SRM 2.2
endpoints

• It helps minimize human errors that are typically

made in writing test cases.
• It offers an easy way to plug-in external libraries

such as an SRM client implementation.
• It offers a powerful engine for parsing the output

of a test, expressing the pattern to match in a
compact and fully descriptive way.

• It offers a testing framework that supports the
parallel execution of tests where the interactions
among concurrent method invocations can be
tested easily.

• It offers a “self-describing” logging facility that
makes it possible to automatically publish the
results of a test.

The S2 families of tests run automatically 5 times a
day. The results of the tests are published on a web
page. In particular, the data of the last run together
with the history of the results and their details are
stored and made available to the developers through
the web. Plots are produced every month on the
entire period of testing to track the improvements and
detect possible problems.
The testbed that we set up includes five different
implementations: CASTOR, dCache, DPM,
BeStMan, and StoRM. It currently has 13 available
endpoints located in Europe and the US. In particular,
5 endpoints are where the main development
happens. These endpoints have been tested for a
period of 7 months. The other endpoints have been
added recently. They are used to verify that the
implementation can accommodate different specific
needs at different sites and help smooth the
installation and configuration process.

Figure 8: Basic test family: Number of

failures/Number of tests over time

Figure 9: Use-case test family: Number of

failures/Number of tests over time

Figure 10: Interoperability test family: Number of

failures/Number of tests over time

In Figure 7 the availability of the main endpoints
over the mentioned period of time is shown. Figures
8,9,10 show the number of failures over the total
number of tests executed over time. While for the
basic and use case families of tests convergence is
near, we still have to do some work in terms of
interoperability and cross copy operations. Stress
testing has just started and some of the available
endpoints are being equipped with more resources for
that. The instabilities shown in the results usually are
caused by service upgrades (to deploy fixes in the
code) or circumstances where the server is too busy
serving other requests (when the endpoint is a
production system not dedicated to tests).
The 'srmv2Suite' is built as a perl wrapper gluing all
of the 36 individual test modules - corresponding
almost one to one to the 38 srmv2.2 methods. Each
test module is a small C application, and is built on
top of gSOAP 2.6. It was written mainly to allow
DPM srmv2.2 implementation, but has also been
used to crosscheck some features of BeStMan and
dCache SRM v2.2 front-ends. It is most of the time
used as a regression test to ease the development
lifecycle, and new use cases and specific tests are
added as soon as new features become available on
the DPM srmv2.2 server. It now includes about 400
different steps, and runs in about 500 sec. Transfers
are achieved through Secure Rfio or GridFTP when
targeting a DPM server, but are switched back to
GridFTP only when testing some other server.
Another SRM test program was developed at LBNL,
is being run several times daily, and the results
published [srm-tester]. S2 and SRM-tester
compliment each other in that S2 uses C++ clients
while SRM-tester used java clients.

6. Publishing SRMs status information
Together with the SRM v2.2 protocol and the data
transfer protocols, an information protocol is needed
for service discovery and accounting purposes. In
service discovery, clients need to check both static
and dynamic status information. The GLUE schema
[glue] is used by several national and international
Grids to provide information services for compute
and storage resources.
After analyzing the capabilities offered by the SRM,
such as the possibility of specifying classes of storage
and the negotiation of the file access protocol
between client and server, an extensive discussion
took place on how much of the configuration
information specific to a storage service needed to be
exposed to applications, monitoring and accounting
facilities. One of the constraints on the schema was
that it could not assume that all storage will be
provided through SRM implementations. For

example, the schema should allow for a simple
GridFTP server to be published as a storage service
with limited capabilities. Coming up with a flexible
model that could satisfy all needs turned out to be
quite complicated. As an example, users are
interested in the free space for a given storage
instance. Defining what “free space” means was not
straightforward. One problem was to avoid double
counting of storage capacity when a given storage
component (tape or disk) is shared among multiple
spaces, e.g. for different virtual organizations, while
each of the spaces is published separately. Another
interesting quantity is the “used space”, for which an
unambiguous and useful definition is not obvious
either. This space could be in use by files, or
allocated by space reservation methods, part of it
being potentially available to store new files, or space
used by files being migrated to tape but available as
soon as the migration is over. For certain
implementations some of these numbers may be
expensive to keep exact track of. Finally, the
proposed information schema for a storage service
had to be backward compatible with the one used
before SRM v2.2 was introduced. This forced us to
make some information unavailable, delaying a more
adequate description of the resources to the next
major revision of the schema.

Acknowledgments
Other people who have made contributions to this
work include (in no particular order) Owen Synge
from DESY, Ákos Frohner, and Laurence Field from
CERN, Sergio Andreozzi from INFN, Stephen Burke
from RAL, Jiří Mencák (author of the S2 language)
from (then) RAL, Ted Hesselroth from FNAL, Andy
Hanushevsky from SLAC.

Conclusions
In this paper, we have described the global
collaboration behind the Storage Resource Manager
protocol and the definition and validation processes
for the SRM protocol that derived from it. We have
described the key reasons for the success of SRM,
namely, (a) an open protocol, unencumbered by
patents or licensing, (b) an open collaboration where
any institution willing to contribute can join, (c) a
well establish validation process (d) the existence of
five interoperating implementations, many of which
are open source. We have described how the SRM
interfaces diverse storage systems to the Grid, from
single disk over distributed file systems, to multi-
petabyte tape stores.
The fact that the protocol supports advanced
capabilities such as dynamic space reservation
enables advanced Grid clients to make use of these
capabilities, but since storage systems are diverse,

implementation support for capabilities must be
optional. On the Grid, SRM is complemented by the
very widely used GLUE information schema, which
allows clients to discover services supporting the
right capabilities.
Finally, we have described how our test collaboration
has been crucial to the definition of the protocol, its
validation and the interoperability of the
implementations, with a range of tests from
individual functions in the API to whole use cases
and control flow. Not only are interoperability
problems discovered before the users do, thus leading
to improved perception of the SRM services in the
users’ view, but the testing also allows advanced but
optional features to be tested incrementally as they
become supported by each implementation.

References
[BGP+’07] O. Bärring, R. Garcia Rioja, G. Lo Presti,

S. Ponce, G. Taurelli, D. Waldron, CASTOR2:
design and development of a scalable
architecture for a hierarchical storage system
at CERN, submitted to CHEP, 2007.

[castor] http://castor.web.cern.ch/castor/
[CCD+’06] Corso, E. and Cozzini, S. and Donno, F.

and Ghiselli, A. and Magnoni,, L. and
Mazzucato, M. and Murri, R. and Ricci, P.P.
and Stockinger, H. and Terpin, A. and
Vagnoni, V. and Zappi, R., “StoRM, an SRM
Implementation for LHC Analysis Farms
Computing in High Energy Physics”,
CHEP’06, Feb. 13-17, 2006, Mumbai, India,
http://indico.cern.ch/contributionDisplay.py?c
ontribId=373&sessionId=13&confId=048.

[condor] http://www.cs.wisc.edu/condor/
[dcache] http://www.dcache.org/
[DD’07] A. Domenici, F. Donno, A Model for the

Storage Resource Manager, International
Symposium on Grid Computing 2007, 26-29
March 2007, Academia Sinica, Taipei, Taiwan

[enstore] http://www-ccf.fnal.gov/enstore/
[hpss] http://www.hpss-

collaboration.org/hpss/index.jsp
[MD’07] J. Mencak, F. Donno, The S2 testing suite,

http://s-2.sourceforge.net
[MSBT’04] G. J. Myers, C. Sandler (Revised by), T.

Badgett (Revised by), T. M. Thomas (Revised
by) The ART of SOFTWARE TESTING 2
edition, December 2004.

[srb] http://www.sdsc.edu/srb/index.php/Main_Page

[srm-tester] SRM Storage Tests and Monitoring,
http://datagrid.lbl.gov/

[srm-collab] http://sdm.lbl.gov/srm-wg
[srm-v22] The Storage Resource Manager Interface

Specification, Version 2.2, April 2007,
http://sdm.lbl.gov/srm-wg/doc/SRM.v2.2.html

[SSG02] Arie Shoshani, Alex Sim, Junmin Gu,
Storage Resource Managers: Middleware
Components for Grid Storage, Nineteenth
IEEE Symposium on Mass Storage Systems,
2002

[SSG03] Storage Resource Managers: Essential
Components for the Grid, Arie Shoshani,
Alexander Sim, and Junmin Gu, in Grid
Resource Management: State of the Art and
Future Trends, Edited by Jarek Nabrzyski,
Jennifer M. Schopf, Jan weglarz, Kluwer
Academic Publishers, 2003

[voms] The Virtual Organization Membership
Service,
http://www.globus.org/grid_software/security/
voms.php

[glue] http://glueschema.forge.cnaf.infn.it/Spec/V13
[xrootd] http://xrootd.slac.stanford.edu/

